

10/2002

#### **PRIMARY PARTNER**

**Argonne National Laboratory** 

#### **DOE FUNDING PROFILE**

DOE \$ 569,000 Non-DOE \$ 0

#### **TOTAL ESTIMATED COST**

DOE \$ 569,000

#### **CONTACT POINTS**

#### Scott M. Klara

Sequestration Product Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4864 scott.klara@netl.doe.gov

#### Sean Plasynski

Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4867 sean.plasynski@netl.doe.gov

#### **Richard Doctor**

Argonne National Laboratory (ANL) 9700 South Cass Avenue Argonne, IL 60439 630-252-5913 rdoctor@anl.gov

#### **CUSTOMER SERVICE**

800-553-7681

#### **WEBSITE**

www.netl.doe.gov



# CO<sub>2</sub> Capture for PC-Boiler Using Flue-Gas Recirculation: Evaluation of CO<sub>2</sub> Capture/Utilization/Disposal Options

## **Background**

Concerns over possible global climate changes due to increasing atmospheric concentrations of greenhouse gases, such as carbon dioxide, have led to a strong emphasis on the development of high-efficiency, coal-based energy systems, incorporating the recovery of  $CO_2$  for sequestration or use. One approach is the use of oxygen fired combustion with flue gas recycle to maintain a normal temperature profile in the furnace. The product directly leaving the boiler then is a  $CO_2$ -rich stream that is ready for sequestration or use with only modest conditioning. Conditioning is required to dry the  $CO_2$ , remove oxygen to prevent corrosion in the pipeline, and possibly other contaminants and diluents such as nitrogen,  $SO_2$  and NOx.

The U.S. Department of Energy is investigating the feasibility of retrofitting boilers using this concept as a strategy for  $\mathrm{CO}_2$  recovery from conventional pulverized coal plants. This approach was conceived nearly twenty years ago at Argonne National Laboratory (ANL) as a low-cost  $\mathrm{CO}_2$  source for enhanced oil recovery (EOR). A molar ratio of  $\mathrm{CO}_2/\mathrm{O}_2$  of about 3 is necessary to preserve the heat transfer performance and gas path temperatures, allowing this system to be applied as a retrofit. ANL is studying all the engineering aspects of this system, including the effect of impurities, such as  $\mathrm{SO}_2$  and  $\mathrm{NOx}$ , and  $\mathrm{CO}_2$  transportation, use, and options for long-term sequestration. If the flue gas can be recycled before  $\mathrm{SO}_2$  scrubbing, significant cost savings are possible.

This project will provide the power industry with a low-cost retrofit system that could remain in service during future upgrades at the power plant. The captured CO<sub>2</sub> can be used for EOR or sequestered. Overall, this project addresses both design and full energy-cycle issues pertaining to our current coal-fired power plants.

# **Primary Project Goal**

The goal of the project is to conduct comparative engineering assessments of technologies for the recovery, transportation, and utilization/disposal of CO<sub>2</sub> produced in high-efficiency, coal-based, energy systems. Coordinated evaluations will address CO<sub>2</sub> transportation, CO<sub>2</sub> use, and options for long-term sequestration. Commercially available CO<sub>2</sub> capture technologies will provide performance and economic baselines for comparing innovative CO<sub>2</sub> recovery technologies across the full energy-cycle.

# **Objectives**

- The major objective is to develop engineering evaluations for the recovery of CO<sub>2</sub> from pulverized-coal-fired power plants retrofitted for flue-gas recirculation and to reconcile and extend these studies across the full energy-cycle.
- Another object is to extend this analysis to identify plants that may be retrofit
  candidates considering the effects of different coals and the accessibility of a
  sequestration zone.

# CO<sub>2</sub> Capture for PC-Boiler Using Flue-Gas Recirculation: Evaluation of CO<sub>2</sub> Capture/Utilization/Disposal Options

## Accomplishments

An oxygen-blown KRW coal-gasification plant producing hydrogen, electricity, and supercritical  $\mathrm{CO}_2$  was studied in a full-energy cycle analysis extending from the coal mine to the final destination of the gaseous product streams to establish energy and cost comparisons against a Vision 21 facility.

A full energy-cycle was evaluated based on simulation of an  $\rm O_2$  blown PC boiler with  $\rm CO_2$  recovery and flue-gas recirculation that includes details of the stream compositions for the whole system.

A transport-reservoir injection simulation that can handle noncondensable and contaminate gases was validated.

A study that shows the cost-effectiveness for flue gas recirculation vs. monoethanolamine (MEA) scrubbing for  ${\rm CO_2}$  capture was completed.

It has been shown that  $\mathrm{CO}_2$  does not interfere with the scrubbing of  $\mathrm{SO}_2$  from a stream with a high concentration of  $\mathrm{CO}_2$ .



#### **Benefits**

Pulverized coal plants are the most common type of power plant; therefore, a system that can be retrofit to such boilers and enable  $CO_2$  recovery will have broad applicability. Flue gas recirculation eliminates the need for  $N_2/CO_2$  separation and sulfur separation, permitting more economical  $CO_2$  recovery than competing amine systems. Technical and economic analyses will build on current accomplishments to develop a lower cost  $CO_2$  capture technology.

